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All quadratic force constants of the ethylene molecule have been calculated using extended 
Hiickel method with Hofmann's parameterization.Good agreement with the experimental values 
obtained for force constants of the deformation modes and a poor one for stretching modes is discussed 
together with the potentialities of this method for molecular shape, bond length and force constant 
predictions. 

Alle quadratischen Kraftkonstanten des ~thylenmolektils wurden unter Benutzung der erweiterten 
Htickelmethode mittels der Parametrisierung nach Hoffmann berechnet. Die gute Ubereinstimmung 
mit den experimentellen Werten, die ftir die Kraftkonstanten der Deformationschwingungen erhalten 
wurde sowie die schlechte fiir Streckschwingungen und die M6glichkeiten, mittels dieser Methode die 
Molektilform, die Bindungslgngen und die Kraftkonstanten vorauszusagen, werden diskutiert. 

Toutes les constantes de force quadratiques d'ethyl~ne ont 6t6 calcul~es en utilisant la m6thode de 
Hiickel &endue avec la parameterisation d'apr6s Hoffmann. Un bon accord avec l'exp6rience a 6t6 
obtenu pour les constantes de force des modes de d6formation tandis que pour les constantes des modes 
de valences l'accord fut mauvais. Les resultats sont discut6s ainsi que l'applicabilit6 de la methode 
pour prediction de la geometrie mol6culaire et de constantes de force. 

Introduction 

A very extensive use of  the ex tended  Hfickel  m e t h o d  ( E H M )  in recent  years  1 
has defini tely p roved  its usefulness for different p rac t ica l  pu rposes  ranging  f rom 
s tabi l i ty  and shape  p red ic t ions  to chemical  reactivity.  

Unfor tuna te ly ,  in spite  of  all this wide usage of  the m e t h o d  we are  still far f rom 
deeper  phys ica l  unde r s t and ing  of  why it works  at  all. F u r t h e r m o r e ,  we even do  
no t  k n o w  fully the scope of  the p r o b l e m s  for which this m e t h o d  gives an  adequa te  
descr ip t ion  and,  unfor tunate ly ,  there  are  no t  m a n y  pape r s  where  the m e t h o d  is 
app l i ed  f rom this po in t  of  view. 

Pe rhaps  the mos t  ser ious  step in this respect  has been made  recent ly  by Allen 
and  Russel  [1],  F u k u i  and  F u j i m o t o  [2] and  Blyholder  and  Cou l son  [3]. 

Allen and  Russel  [1]  c o m p a r e d  in deta i l  the "ab initio" S C F - L C A O - M O  
calcula t ions  for different t r i a tomics  with E H M  results.  This c ompa r i son  showed 
tha t  jus t  the sum of  the E H M  orb i ta l  energies m a y  yield r easonab le  b o n d  angle 
p red ic t ions  at  least  for non- ion ic  species. 

M o r e  recent  is the a t t e m p t  by  F u k u i  and  F u j i m o t o  [2] who showed that  using 
some heur is t ic  a s sumpt ions  one can express the to ta l  H F  energy as a sum of  
orb i ta l  energies and  of  a t e rm independen t  of  nuc lear  conf igurat ion.  

1 Cf. list of papers cited in reference [1]. 
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Finally, the assumption of the proportionali ty of the off-diagonal matrix 
elements of the Hamiltonian to the corresponding overlap integrals has been 
investigated very recently by Blyholder and Coulson [3]. They found that this 
assumption is fairly well satisfied except for the matrix elements corresponding to 
the nearest neighbors in which the kinetic energy terms play an important r61e. 

In our opinion, it should be admitted that in spite of all these attempts there are 
many facets of this method which are presently not fully understood, be it the 
approximation of the total energy by just the sum of orbital energies; the actual 
values of the parameter k or the non-invariance of the method toward the energy 
zero to name but few. 

The aim of this paper is to give additional supporting evidence to the fact that 
the method might be very useful in predicting molecular shapes while reliable 
bond length predictions cannot be expected. The actual calculations presented in 
this paper further supplement the above statement in the sense that the method 
seems to be capable of giving useful predictions even for such sensitive quantities 
as force constants which are associated with bond angle deformations while 
yielding very poor  results for bond stretching force constants. 

As far as the ethylene force constants calculation concerns we are not aware of 
any former work except that of Parr and Crawford [4], who calculated the 
torsional mode force constant in various electronic states using a re-electron 
approximation. Yet ethylene seems to be an excellent testing example for such 
calculations since it already represents a real polyatomic molecule with its 12 
vibrational modes while being still accessible to a fairly accurate spectroscopic 
study so that the existing experimental data, last time updated by Cyvin and 
Cyvin [5], are both complete and very reliable. 

Method and Results 

In all the calculations reported below the standard version of the E H M  as 
given by Hoffmann [6] was used: A simple arithmetic mean value formula was 
used for the off-diagonal matrix elements H o. of the Hamiltonian matrix 

H u = ( 1 / 2 ) k ( H u  + H~j)S u , (1) 

and the value k = 1.75 was used unless otherwise stated. The overlap integrals S~j 
were calculated for Slater atomic orbitals with the effective nuclear charge ~ = 1.0 
for ls-orbitals of H-atoms and ~ = 1.625 for 2s- and 2p-orbitals of C-atoms. 

First, the absolute minimum of the potential energy hypersurface was found. 
Since any out-of-plane distortion of the molecule leads to an energy increase, the 
molecule was kept planar and symmetric in the minimization procedure. There- 
fore, the following three parameters were chosen to describe the molecular 
structure: CC bond length, CH bond length and H C H  angle. 

The total E H M  energy of ethylene molecule was calculated in about 400 points 
and least squares fits for different "cuts" of the energy surface (with two para- 
meters fixed) were carried out. Next, the least squares fits of these energy minima 
as a function of the second parameter were carried out and, ultimately, these 
energy minima were fitted as a function of the last parameter and the structural 
parameters corresponding to these absolute minimum determined. In order to 
double check this procedure, we have carried it out for all six possible permutations 
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of the sequence of the structural parameters used in the least squares procedure 
indicated above. In all cases, the same energy minimum and, consequently, the 
same structural parameters were obtained, irrespective of the 2 na or 3 ra order least 
squares fits being used. The resulting molecular structure is given in Table 1 
together with the corresponding experimental values and the values calculated by 
Hoffmann [6]. Our resulting parameters differ from those given by Hoffmann in 
spite of the fact that the same method and parameterization was used, since he 
carried out only an approximate minimization with one cycle for each parameter. 
Nevertheless, the difference between Hoffmann's [6] approximate and our 
accurate values are within the accuracy claimed in Hoffman's paper (i.e. 0.05/~). 

Table 1. Structural parameters of ethylene (bond lengths in ~, angle in degrees) 

Parameter  Experimental [7] Hoffmann [6] This work 

CC 1.337 1.47 1.516 
CH 1.086 0.95 0.91v 
H C H  117~ ' 125 ~ 126~ 

Let us mention here that if the bond lengths are assigned the experimental 
values and only the HCH angle is varied we get a much better agreement with the 
experimental value for the latter, viz. 117 ~ [8]. 

In vibrational studies of the planar X2Y 4 molecules a number of different sets 
of symmetry coordinates has been used. For  our purpose it is irrelevant which set 
is used, but sets without redundancies are preferred. Therefore, in our force 
constant calculation we have used systematically the same set of symmetry 
coordinates as Cyvin and Cyvin [5] for the sake of a direct comparison with their 
experimentally determined force constants. Using the numbering convention as 
shown in Fig. 1 these symmetry coordinates for the individual symmetry species 
of the point group D2h are as follows: 

Alo S 1 = (r 1 q- r 2 -b r 3 + r4)/2 

$2 = d 

$3 = (RD)l/2(81 ~- 82  ~- 83 -{- 8 4 ) / 2  

Blu $4 = (rl  - -  r2 -{- r3 - -  r4)/2 
s~ = (RO) */2 (8~ - 82 + 83 - 8~)/2 

B2u $6  = (r l - r 2 - r 3 + r4 ) /2  (2) 
$7 = (NO) 1/2 (81 - 82  - 83 ~- 8 4 ) / 2  

B3, $8 = (rl + r2 - r3 - r4)/2 

$9 = (RD) 1/2 (81 -[- 82  - 83 - / 3 4 ) / 2  

B2~ Sto = (RD/2)*/2(21 - 22) 

Alu a l l  = Rq) 
B~u S~2 = (RD/2) ~/2 (2~ + 22) 

where R and D are the equilibrium bond lengths of the CH and CC bonds, respec- 
tively. Further, r i and d are the displacements of the CHI and CC bond lengths, 
respectively, and 81 is the in-plane bending of the HiCC angle. Finally 22(72) is the 
out-of-plane bending of the H1H2C (H3H4C) plane and cp is one half of the 
27* 
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Fig. 1. The coordinate system and hydrogen atoms numbering used 

torsional angle between the H1CH 2 and H3CH 4 planes. The angular coordinates 
are multiplied by (RD) 1/2 or by R so that all coordinates have the dimension of 
a length. This set of symmetry coordinates is complete and does not contain any 
redundancies. 

In order to determine the diagonal quadratic force constant for each symmetry 
coordinate, we have calculated the energy in 8 points in which the molecule was 
distorted from its equilibrium position along the respective symmetry coordinate. 
The separation of these points was 0.01 ~ for the stretching modes and 1 degree 
for the bending and torsional modes. The force constant was then obtained directly 
from the quadratic and cubic least squares fits of the pertinent 9 points "potential 
curve". The resulting force constants are given separately for bending (Table 2) 
and stretching (Table 3) modes for obvious reasons (see Discussion). 

Table 2. Calculated and experimental values of the deformation vibrational mode quadratic force constants. 
Calculated force constants obtained by quadratic as well as cubic least squares (lsqs) fits are 9iven 

Type of the Symmetry Symmetry 
vibrational species coordinate 
mode 

Quadratic force constants of the deformation vibrational 
modes (in mdyn//~) 

Experimental Calculated in the Calculated in the 
value [53 equilibrium molecular experimental mole- 

configuration" cular configuration b 
2 "d order 3 rd order 2ndorder 3 rd order 
lsqs lsqs lsqs lsqs 

in-plane A lg $3 0.96302 0.933 0.944 1.111 1.111 
Big Ss 0.45585 0.495 0.500 0.530 0.530 
B2u $7 0.31691 0.438 0.444 0.506 0.506 
B3u $9 0.95955 0.919 0.933 1.079 1.079 

out-of-plane B2o $1o 0.15524 0.160 0.160 0.210 0.210 
At .  Sl 1 1.81997 1.802 1.802 1.595 1.595 
B1. $12 0.20559 0.197 0.197 0.270 0.270 

a These are the values of the force constants calculated for the EHM equilibrium molecular 
structure (see Table 1), i.e. calculated in the minimum of the EHM energy hypersurface. 

b These are force constants calculated from the EHM energy hypersurface but in the point 
corresponding to the experimental molecular structure, which is clearly off the equilibrium of this 
hypersurface. 
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Table 3. Calculated and experimental values of the stretchin 9 vibrational mode quadratic force constants. 
Calculated force constants obtained by quadratic as well as cubic least squares (lsqs) fits are 9iven 

Symmetry Symmetry 
species coordinate 

Quadrat ic  force constants of the stretching vibrational modes 
(in mdyn/A) 

Experimental  Calculated in the Calculated in the 
value [5] equilibrium molecular experimental molecular 

configuration a configuration b 

2 na order 3 rd order 2 nd order 3 'a order 
lsqs lsqs lsqs lsqs 

Alo SI 6.78460 1.482 1.483 1.202 1.047 
$2 10.75973 2.388 2.396 2,701 2.707 

B1 o $4 5.14516 0.929 0.932 0.797 0.683 
B2~ $6 5.68803 0.910 0.914 0,736 0.631 
B3~ S 8 5.82683 1.537 1.541 1.233 1.056 

a, b See Table 2. 

In these tables we have also included force constants, calculated not in the 
equilibrium position of the molecule but in the points of the energy hypersurface 
corresponding to the experimental molecular structure and, consequently, placed 
off the minimum of the EHM energy surface. In both cases we present the values 
calculated from both quadratic and cubic least squares fits. We observe that while 
in the equilibrium molecular configuration the 3 rd order least squares values are 
systematically slightly higher than the 2 nd order ones, the force constants calculated 
off the equilibrium position of the E H M  hypersurface are identical in the case of 
the deformation modes and shifted to either side in the case of the stretching 
modes. 

Further, we have calculated the interaction force constants. Unfortunately, 
due to the symmetry of the molecule there is not a single interaction constant in 
ethylene coupling two deformation modes. Consequently, quantitative agreement 
cannot be expected and we have made the calculation in order to see whether we 
can reproduce at least the sign of these constants. The results are shov~n in Table 4. 
In this table we present for obvious reasons only the force constants calculated in 
the equilibrium molecular configuration using second order least squares fits. 

Table 4. Calculated and experimental values of the quadratic interaction force constants 

Symmetry Symmetry Quadratic interaction force 
species coordinates constants (mdyn/A) 

involved Experimental [5] Calculated 

Ala $1 $2 1.00232 0.504 
$1S3 --0.11082 -0 .232  
$2S 3 1.51281 0.630 

B1 o $4S5 0.19481 0.199 
Bz,, $6S v 0.03269 0.107 
B 3,, S 8 S 9 - 0.11082 -- 0.202 
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Discussion 

Hoffmann [6] in his well known paper concerning the EHM parameterization 
which is now widely used has already pointed out that the EH M method will 
not give chemical binding for simple molecules like H 2. 

Indeed, investigating the E H M  scheme in greater detail one can see that at 
least in simple cases, which allow a closed formula to be used, the chemical 
binding obtained by the method is more or less an artifact. A realistic potential 
energy curve is obtained in this method only due to the proper character of the 
atomic overlaps and has nothing to do with the intimate interplay of the nuclear 
attraction, coulomb and exchange terms. 

A most ffapant and clear demonstration of this fact is obtained from the 
following simple two-electron diatomic model calculation. Suppose we have a 
two-electron homonuclear diatomic system, for example H 2 (the assumption of 
the model being homonuclear  is not at all essential and the same conclusions may 
be drawn for the heteronuclear case as well, only the formulae being slightly more 
complicated) and we calculate the potential energy curves in a general electronic 
state of our model. Writing H for the VSIP and S(r) for the overlap (as a function 
of the internuclear separation r) of the atomic orbitals used to represent our state, 
we get the following simple formula for the molecular orbital energies as a function 
of the internuclear separation 

E+-(r) = H(1 +_ kS(r) )~(1  -t- S (r ) )  . (3) 
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Fig. 2 ~ c .  The illustration of the interrelation between the shape of the potential energy curve and the 
character of the overlap as a function of the internuclear distance for simple two-electron homonuclear  
diatomic model. Three typical cases are shown corresponding to the following electronic configurations: 
a (ls) 2, b (2p,) 2, c (ls, 2p,). Each figure shows the dependence of the overlap integral S (dotted line 
and right hand scales) and of the orbital energies E' (solid lines and left hand scales) as a function of the 
effective internuclear separation e (O = ~r where ~ is the effective nuclear charge and r is the internuclear 
distance in atomic units). The orbital energies E' are given by the relation (1) with H = - 1 and are shown 

for two different values of the semiempirical parameter  k (i.e. 1.75 and 3.0) 
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Accomodating two electrons of our model in either molecular orbital obtained 
(the ground state potential curve corresponds to E-- for S > 0 and H < 0) one can 
see immediately that the resulting potential energy curve will be a monotonous 
function of the internuclear separation as far as S(r)  is a monotonous function. 
Indeed, our potential energy curve will have a minimum at some point r = ro, 
(ro r 0 or oo), only if S(r) has an extremum as a function of r for some r = re, (r  e =/= 0 
or o0). Moreover, in this trivial case, if S(r)  has an extremum at r = r e, then the 
minimum of the potential curve will appear for the same value of r, e.g. r o = re, 

since 

d(2E +) dS  
dr - -+ [2H(k - 1)/(1 _+ S) 2] d~" (4) 

In other words, the equilibrium internuclear distance is predetermined in this 
simple case by the extremum of the overlap as a function of the internuclear 
distance. This is illustrated graphically for three typical cases in Fig. 2. 

Without going into further details one can see that a similar mechanism will 
be at work even in more complicated systems. Therefore, one cannot expect to get 
reliable bond lengths from this method since the latter are by no means simply 
related to the internuclear separation corresponding to the overlap extremum. 

On the other hand it is well known that a very simple principle of the maximum 
overlap is extremely useful not only for a qualitative prediction of the hybridization 
type which will occur but, in most cases, gives a reasonably good quantitative 
description of the molecular shapes (cf. I-9]). 

The intimate relationship of the EHM and the maximum overlap methods 
[10, 11] is quite obvious from their general structure; even though it is difficult 
to demonstrate this using simple algebra except in simple cases. The main difference 
is perhaps that in EHM the maximum overlap condition is replaced by a minimum 
condition for a certain "energy-type quantity" given by the sum of all occupied 
EHM orbital energies. Nevertheless, the resulting molecular orbitals are very 
similar in the maximum overlap method, E H M  as well as in the SCF LCAO MO 
method [1]. Consequently, it is not very surprising that E H M  gives reasonable 
molecular shape predictions just as the simple maximum overlap method does. 
Nevertheless, it is very surprising in our opinion that the "energy-like quantity" 
of the EHM gives not only reasonably predictions for the relative isomer stability 
and the order of magnitude of rotational bariers but, as our calculations presented 
in this paper demonstrate, it gives such a good representation of the potential 
energy hypersurface around the equilibrium that one can obtain very meaningful 
estimates for the force constants of the deformation modes (cf. Table 2). Further, 
this type of calculation might be useful for the sign determination of the inter- 
action force constants which are sometimes difficult to obtain from the analysis 
of the experimental data (cf. Table 4). 

The considerations presented above suggest why similar results cannot be 
expected for bond lengths and, consequently, stretching force constant estimates 
(cf. Table 3). Therefore, even the interaction force constants, which in our case 
always couple at least one stretching mode with the deformation or another 
stretching mode, are bound to give poor  quantitative results. Nevertheless, the 
signs of these constants are always correct. 
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Similar conclusions can be made on the basis of the comparison with the 
ab initio SCF data which has been carried out by Allen and Russel [1]. Further- 
more, on the basis of their results, as well as on the basis of other considerations, 
it may be stated that the method is likely to fail for molecules with non-homo- 
geneous charge distribution e.g. for molecules involving strongly polarized or 
nearly ionic chemical bonds. 

We have further examined how the resulting force constants are influenced by 
the value given to the semiempirical parameter k. As is well known, the commonly 
used value 1.75, which we have also used in our calculations, was determined by 
fitting the calculated and experimental values of the rotational barrier of ethane. 
One might, therefore, expect that calculation of different molecular properties 
will require different values for this parameter. 

Again, consideration of a trivial example of a hydrogen-like molecule presented 
above, gives the following relationship for the dependence of the force constant 
on the parameter k: 

d2(2E-+) r=ro dr 2 = + [2H(k - 1)/(1 + S(ro)) z] d2S 
- dr2 r=ro' (5) 

dS 
since drr-,.=~o = 0.  

On the basis of this simple estimate one can expect an approximate linear 
relationship between the force constante and the parameter k. 

Indeed, the actual calculations shown in Figs. 3a and b are in very good 
agreement with the above estimate. For  the sake ofcompleteness we haveto add that 
the calculation of force constants using different k values (Figs. 3 a and b) has been 
always carried out for a fixed molecular structure corresponding to an absolute 
minimum of the potential hypersurface calculated with k = 1.75. Therefore, the 
force constants for k # 1.75 were calculated offthe equilibrium point of the potential 
hypersurface since the equilibrium clearly depends on k, especially for the stretching 
modes. Nevertheless, the use of the fixed geometry in calculating force constants 
for different values of the semiempirical parameter k is not at all essential and is 
well justified as shows a comparison of force constants calculated in and off  the 
equilibrium position given in Tables 2 and 3. Indeed, the potential surfaces are 
fairly well harmonic as follows from a comparison of th e force constants calculated 
by 2 na and 3 rd order least squares fits shown in Tables 2 and 3 and, clearly, a 
harmonic potential curve has the same second derivative in each point. Actually, 
using 3 rd order least squares fits either off or in the minimum of the respective 
potential curve for a couple of cases we have obtained practically the same results 
as with a 2 no order least squares fits off the equilibrium geometry. 

With the help of Figs. 3 a and b we could now easily find the values of k giving 
the best agreement of experimental and calculated force constants, since we can 
find for each force constant a value of k giving an  exact agreement. This is 
graphically demonstrated in Figs. 3 a and b where on each plot we have marked 
a point corresponding to the experimental value of the given force constant. 
We see immediately that for deformation modes the value of k = 1.75 is well 
suited since all points are scattered around this value. The stretching modes, 
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for which one cannot expect very good agreement with the given scheme anyway, 
would require quite unrealistic values of k of the order of 4.5-5.0. Nevertheless, 
it is quite interesting that for such a high value of k we would get approximately 
right values for these constants even though the accuracy would be much worse 
than for the deformation force constants. This fact seems to suggest that it would 
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Fig. 3a. The dependence of the calculated force constants f l  of the deformation modes [designated by 
the pertinent symmetry species and symmetry coordinates (2)] on the semiempirical parameter k 
(for details see text). Large empty circles indicate the corresponding experimental values of the given 
force constants. The dotted vertical line corresponds to usually used value 1.75 of the semiempirical 

parameter k 

Fig. 3 b. The dependence of calculated stretching modes force constants on the semiempirical parameter 
k. (The same designations as in Fig. 3 a used) 

be interesting to use different values of k for different pairs of atomic orbitals as 
suggested by Boer, Newton and Lipscomb [12] or, eventually, to use the ap- 
proximation for non-diagonal matrix elements introduced by Cusachs [13]. 

Force constant calculations are currently being undertaken for some other 
simple molecules in order to find out whether the results obtained for the ethylene 
molecule are typical. 
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